N

O

HADI HILAL
b -
® o—/
O

LARAVEL
MASTERY

YOUR PRACTICAL GUIDE
TO BUILDING LARGE
SYSTEMS

e
2O
e \=4

OHA‘]Z)I I;IILA%

Laravel Mastery

Your practical guide to building
large systems

/ \v < . >
2

)

1.Introduction
2.The Difference Between a Normal and a
Professional Developer
1.Laravel Best Practices
2.Clean Code In Laravel
3.Structuring a Laravel Project Professionally
/4. Laravel Performance Optimization
5.Complex Concepts in Laravel
6.Service Container & Service Provider
7.The best strategies for building a Laravel project
8.How to Deal with Code Legacy
9.Building a Professional RESTful API
10.Testing In Laravel
11.CD/CI — Automated Deployment
12.Practical Example Order Management System
13.Important Tools for a Professional Developer
1/4.How to Work Remotely in Global Companies
15.Resources For Mastering Laravel
16.Epilogue

In recent years, Laravel has not only attracted
developers but also captured their hearts with its ease
of use and elegant structure.

However, there's a fact not everyone knows: learning
Laravel is one thing, and mastering it professionally
is quite another.

Hence the idea of this book...

This book is not just a review of Laravel functions
and methods, but rather a serious attempt to offer
something deeper than superficial explanations.

I have compiled the culmination of over five years of
experience working on Laravel projects.

During my journey with Laravel, I encountered bugs
that weren't covered in courses and devised solutions
that weren't presented.

Little by little, I began to understand that Laravel's
power lies not only in its tools but also in the way
they are used within the work environment, and
realized that Quality, speed, and teamwork are not
luxuries, but rather a necessity.

This book is not a beginner's introduction, nor is it
merely an academic guide.
Rather, it is a compilation of my experiences and
practical expertise, for you who:
e have passed the basics and want to move from
"know Laravel" to "master it."
e Aspire to write clean, flexible, and scalable code.
e Seek practices respected by professional
developer communities.
e« Want to see how Laravel is actually used in large
projects.
e Dream of building giant systems and working for
global companies.

In every paragraph of the book, you'll find a mix of
real-life experiences, smart solutions, and advice
from global companies.

If you're ready to take it to the next level, get your
coffee ready, open your editor, and get ready to
rebuild your understanding of Laravel.

Because this book will not only teach you how to
write professional code, but also how to think like a
professional Laravel developer. ©

The difference between a

developer
(Normal VS professional)

‘““A developer's level is not measured by the number
of functions he memorizes or the features he knows,
but rather by the depth of his understanding of the
system he works on and his ability to write code that
will serve it in the future.”

/

oY
=€/

Let's discover together the fundamental differences
between a developer who simply writes working code
and a professional who builds robust and sustainable
systems.

The average developer focuses only on solving the
current problem.
Their code may work today, but it will become a
burden in the future.
In contrast, a professional developer always thinks
about the appearance of the code before writing a
single line.
They ask themselves:
e Is this code flexible and easily modifiable?
e Have I separated the business logic from its
presentation (Separation of Concerns)?
e Will my colleague understand this code after me
without a long explanation?
A practical example:
Instead of putting all the business logic inside a
Controller, the professional moves it to a Service
Layer or Action Class to keep the Controller clean and
solely responsible for receiving the request and
sending the response.

The average developer knows basic commands like
Route::get(...) and knows how to use them.
The professional,

On the other hand, delves deeper to understand how
it works from the inside out.
He doesn't just memorize.Rather, he understands:
 How Laravel solves routes using Service
Containers.
« How Dependency Injection works and how to
inject it flexibly.
e How to customize the middleware to serve
specific needs.
This deep understanding gives him the ability to
solve complex problems and customize the
framework beyond out-of-the-box solutions.

Not everything good should always be used. An
average developer might use a feature because they
saw it in a video or heard about it.

But a professional always asks:

e ""Is this feature appropriate for this particular
project?

e Or will it complicate things unnecessarily?"

Examples:

e Livewire is a great tool, but it can be overkill for a
simple component that doesn't require real-time
interaction.

e Resource Controllers organize work perfectly,
but they may not be the best choice for a very
simple task that doesn't require all these
functions.

Clean code is not an option; it's a foundation.
It's about writing a clear story that any other
developer can understand.
« How? Name variables and functions with clear,
expressive names (e.g., calculateTotalPrice()
instead of calc()).

e Divide code into small units responsible for only
one task.

e Follows SOLID principles naturally without
having to remember their names.

Practical example:

Instead of writing user activation logic in three steps

Suser = User::find($id);
Suser->is_active = true:

Suser->save():

A professional writes expressive code that hides
details in the background of the service, such as:

SuserService->activate($Sid);

11

A pro knows how to build Laravel applications
correctly. He puts everything in its place:
e He uses an .env file only for environment
variables (such as API keys) and not constants.
e He uses config files for mutable options.
e He uses Form Requests for data validation.

Professionals don't just stick to the basics, but rather
take advantage of the powerful tools Laravel provides
to save time and improve their code.
e Tinker: To test ideas and quickly execute
commands in the terminal.
e Telescope: To monitor application performance
and debug.
e Horizon: To manage queues effectively.
e Event/Listeners: To cleanly separate events from
responses.

Professionals aren't people who never make
mistakes; they learn from every mistake.

They can analyze the problems they encounter and
document solutions to avoid them in the future. Their
code and GitHub projects are filled with notes and
improvements that reflect their continuous learning
process.

If the only person who understands your code is you,
you haven't reached professionalism vet.

Good code is easy to read and self-explanatory.
Compare these two Codes:

if(Suser->hasActiveSubscription()){//
..}

And this code:

if(count(Suser->subscriptions-
>where('active', true)) > 0) {// ...}

The first option is much clearer and makes
immediate sense, making the code easier to read and

maintain.

13

